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Two identities in statistical mechanics involving entropy differencessor ratios of densities of statesd at
constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the micro-
canonical ensemblefC. Jarzynski, Phys. Rev. Lett.78, 2690s1997dg, which can be seen as a “fast-switching”
version of the adiabatic switching method for computing entropiesfM. Watanabe and W. P. Reinhardt, Phys.
Rev. Lett. 65, 3301s1990dg. The second is a thermodynamic integration formula analogous to a well-known
expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be
conveniently used in conjunction with a scaling relationsherein derivedd that allows one to extrapolate mea-
surements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the
context of numerical simulations are discussed.
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I. INTRODUCTION

In the ubiquitous studies of phase stability, phase transi-
tions, and reaction directions, most properties of interest are
embodied in the free energies and entropies corresponding to
the desired phases or reaction states. Not surprisingly, a great
amount of intellectual effort has been directed toward finding
ever more efficient computational means of estimating these
quantitiesf1g. Within the wider domain of equilibrium ther-
mostatistics, a similar role is played by the so-called density
of states, the knowledge of which generates not only free
energies and entropies, but also heat capacities and the very
partition function. Here, too, one finds a great variety of
computational techniques specifically designed for its esti-
mation ssee, e.g.,f2g and references thereind.

Traditionally, the aforementioned computational methods
are inherentlynondynamical, i.e., the relevant data are ob-
tained from either a single equilibrium macrostate, or a series
of such states. An exception is provided by the adiabatic
switching method of Watanabe and Reinhardtf3g, which al-
lows one to recover entropy differences from a single dy-
namical trajectory connecting the states of interest. In prin-
ciple, this method yields an exact estimate of the entropies
provided the “switching process” is infinitely slow; in prac-
tice, one has to cope with the systematic errors that arise due
to the unavoidable finite switching timef1g ssee alsof4g for
further aspects of this methodd. In the context of free energy
differences, this situation has substantially changed after an
identity connecting free energy differences at constant tem-
perature andnonequilibrium processes was derived by
Jarzynskif5,6g, viz.,

e−DFsTd/T = ke−W/Tl, s1d

whereDFsTd;FBsTd−FAsTd is the sHelmholtzd free energy
difference between the states of interestA andB, the angular
brackets denote an average over all realizations of a pre-

defined switching process connecting the statesA andB, and
W is the net amount of work performed on the system during
each realizationsthroughout this paper, the units will be cho-
sen so that the Boltzmann constantkB equals unityd. Unlike
the method of Ref.f3g, the above equality does not depend
upon the rate at which the dynamical switching process is
performed, and hence is free from the systematic errors as-
sociated with finite switching times. Another welcome com-
putational aspect of this identity is that it is trivially
parallelizable—each realization of the process can be per-
formed separately. Because of these features, the Jarzynski
equality sJEd is becoming increasingly popular in the simu-
lation community, and various reviews are already available
ssee, e.g.,f1,7–9gd.

Although its generalization to free energies other than the
Helmholtz one is straightforwardf9,10g, the analog of the JE
for entropiescannot be obtained by such a direct route. In
this case, one is intuitively tempted to adapt the derivation of
Ref. f5g by simply replacing the Boltzmann factor with the
microcanonical distribution, but this introduces a fundamen-
tal difficulty related to the finitesor infinitesimald support of
the latter.1

The present work aims at providing a solution to the
above difficulty by considering an initially microcanonical
system that evolves in time under a non-Hamiltonian, isoen-
ergetic dynamics.2 As we shall see by explicit construction of
such a dynamics, the problem associated with the microca-
nonical distribution is overcome, and one is able to derive a
nonequilibrium identity for entropy differences at constant
energy, much like Eq.s1d for free energy differences at con-
stant temperaturefsee, in particular, Eq.s19dg. In addition, its
quasistatic limit reduces to an identity that generalizes a
well-known thermodynamic integration formula for free en-
ergies fEq. s12dg. Though admittedly difficult to realize in
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1 The reader familiar with the original derivation of the Jarzynski
equality in Ref.f5g is invited to try this replacement by him/herself.

2 This possibility was conjectured by Jarzynskif25g during a pre-
sentation of Eq.s12d by the author.
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real experiments, the isoenergetic processes that underly
these results are easily implemented numerically, as dis-
cussed shortly.

The remainder of this paper is organized as follows. In
Sec. II, the central nonequilibrium identity is introduced and
used to derive some interesting limiting cases in Sec. III. The
importance of these results in the numerical estimation of
entropies and densities of states is discussed in Sec. IV, fol-
lowed by a summary and outlook in Sec. V.

II. DERIVATION

To begin the derivation, assume a purely classical frame-
work is appropriate, and letG;sx ,pd be a point in the sys-
tem phase space, wherex ,p represent the canonically conju-
gate position and momenta coordinates of all the particles,
respectively. The system of interest has a HamiltonianH
=Hlsx ,pd that depends parametrically on a predefined time-
dependent functionlstd. This function is an external param-
eter that “switches” fromls0d=A to lstd=B in a given
switching timet. In order to represent an isoenergetic pro-
cess, one needs to model a suitable “thermostat” that ex-
changes heat with the system so as to precisely counterbal-
ance the work done by the external parameterl. One
possible way of achieving this is to modify Hamilton’s equa-
tions of motion by introducing an artificial “force” fieldF
;sFx,Fpd on G as

ẋ =
]H

]p
+ FxsGd, s2d

ṗ = −
]H

]x
+ FpsGd, s3d

and demand the constancy of the system energy through

dH

dt
= = H · Ġ +

]H

]l
l̇ = 0, s4d

where =;] /]G. Using the modified equations of motion,
one immediately sees that the condition expressed by Eq.s4d
is satisfied by any vectorF satisfying=H ·F=−l̇]H /]l, i.e.,
the desired force field is given in general by

F = − l̇
X

X · = H

]H

]l
, s5d

where X =XsGd is an arbitrary vector field not completely
perpendicular to=H. Particular examples ofX satisfying this
condition areX =s0,]H /]pd, andX = =H itself. The former
resembles the “Gaussian” thermostats widely used in the lit-
erature to model and simulate nonequilibrium processesssee,
e.g., Refs.f11,12g for reviewsd, and will soon be discussed in
more detail. In general, however, Eq.s5d provides a more
flexible recipe particularly suited for parameter-dependent
Hamiltonians.

The time-dependent ensemble density for the above non-
Hamiltonian dynamics will now be derived. By direct inte-
gration of Liouville’s equation in Lagrangian formfcf. Eq.
s3.3.8d in Ref. f11gg, one obtains the general solution

rtsGtd = r0sG0de−tL̄tsGtd, s6d

where

L̄tsGtd ;
1

t
E

0

t

dsLsGsd s7d

is the time average of the “phase space compression factor”

LsGd; = ·Ġ along the trajectory that connectsG0 to Gt. The

notation L̄tsGtd implies that we are looking at the above
functional of the phase space trajectoryhGsj, s: f0,tg as a
function of the end pointGt, this being possible due to the
deterministic character of these trajectories. For a system
evolving under the isoenergetic equations of motion Eqs.s2d
and s3d, with F given by Eq.s5d, one has

L̄tsGtd = −
1

t
E

0

t

dsl̇ = ·S X

X · = H

]H

]l
D s8d

so the desired density att is completely determined by Eqs.
s6d and s8d and the initial condition

r0sG0d =
d„E − HAsG0d…

VAsEd
, s9d

which is just the microcanonical distribution. Hered is the
Dirac delta function, andVlsEd;edG d(E−HlsGd) is the
density of states at the external parameterl.

Consider now the following average over all realizations
of a switching process that takeslstd from A to B in t units
of time:

ketL̄tl =E dGtrtsGtdetL̄tsGtd

=E dGt

d„E − HAsG0d…
VAsEd

. s10d

In the second line above, Eqs.s6d and s9d have been used.
Since the system Hamiltonian is constant along any trajec-
tory generated by Eqs.s2d ands3d fcf. Eq. s4dg, in particular
HAsG0d=HBsGtd, it follows from Eq. s10d that

eDSsEd = ketL̄tl , s11d

where L̄t is given by Eq. s8d, and DSsEd
; lnfVBsEd /VAsEdg is the entropy difference between the
thermodynamic statesA and B. The identity above, along
with its quasistatic versionfEq. s12dg, are the central results
of the present paperfsee also Eq.s19dg. Some computational
aspects of these results will be discussed shortly.

III. LIMITING CASES

Let us now study the quasistatic limit of Eq.s11d, i.e., the
limiting case wherelstd changes infinitely slowly fromA to
B. In this case, by a slight extension of the “adiabatic ergodic
hypothesis”f13g, one expects that the dynamical state of the
system sGsd spends a sufficiently long time sweeping a
nearly constant-energy, constant-l surfaceE=HlsGsd so that
one can invoke the approximation
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1

t
E

0

t

dsLsGsd =
1

t
E

0

t

dskLlE,lssd squasistaticd,

where the subscripted angular brackets denote a microca-
nonical ensemble average at constantE and lssd. Accord-

ingly, the time averageL̄t is independent of the specific re-
alization of the switching process, and it follows after a
simple change of integration variables that Eq.s11d reduces
to the following thermodynamic integration formula:

DSsEd = −E
A

B

dlK= ·S X

X · = H

]H

]l
DL

E,l
. s12d

Recall that the Jarzynski equality also reduces to a thermo-
dynamic integration formula in the limit of quasistatic pro-
cesses, viz.,DFsTd=eA

Bdlk]H /]lll f5g, a result that can be
easily derived by standard statistical mechanics. The exis-
tence of an arbitraryssee aboved vector field in Eq.s12d is
analogous to a generalization of the thermodynamic integra-
tion formula forDF also derived by Jarzynskif14g.

An independent proof of Eq.s12d based on ergodic ma-
nipulations f15g is now provided as a consistency check.
Starting from DSsEd=eA

Bdls]S/]ld and SlsEd; ln VlsEd,
one has

]

]l
ln V =

1

V

]

]l
E dG d„E − HlsGd…

= −
1

V

]

]E
E dG d„E − HlsGd…

]H

]l

= −
1

V

]

]E
R

S

da

u ¹ Hu
]H

]l
, s13d

whereS is the surfaceE=HlsGd, andda is an infinitesimal
area element of this surface. Now letX =XsGd be a vector
field not completely perpendicular toda;da=H / u=Hu.
Then

da

u = Hu
= da ·

X

X · = H
,

so that, by the divergence theorem and a subsequent energy
differentiation, Eq.s13d becomes

]

]l
ln V = −K= ·S X

X · = H

]H

]l
DL

E,l
,

which coincides with Eq.s12d upon integration.
Although Eqs.s11d ands12d are exact and can in principle

be directly utilized in numerical simulationssSec. IVd, it is
interesting to investigate their limit in the case of large sys-
tems. Consider first the integrand of Eq.s8d. One has, ex-
actly,

= ·S X

X · = H

]H

]l
D =

1

T
]H

]l
+

X · = s]H/]ld
X · = H

, s14d

where

1

T ; = ·
X

X · = H

is an inverse “instantaneous temperature” that coincides with
the inverse of a recently derived expression for the microca-
nonical temperaturef16,17g upon ensemble averaging. As-
sume now that, as expected,T is intensive. Two possibilities
of interest arise:sad l couples to a selected number of par-
ticles andX thermostats all the particles, orsbd l couples to
all the particles andX thermostats any number of particles.3

Under these conditions and as the total number of particles is
increased, the second term in the right-hand side of Eq.s14d
either sad vanishes orsbd becomes negligible in comparison
to the first one. For large enough systems, therefore, Eq.s8d
can be approximated as

L̄t = −
1

t
E

0

t

dt l̇
]H

]l

1

T slarge systemsd,

and the nonequilibrium identity Eq.s11d can be rewritten as

KexpS−E
A

B

dW/TDL = eDSsEd slarge systemsd,

where l̇]H /]l has been identified with the rate of work
input due to the external parameterl f7g fsee also Eq.s4dg,
i.e.,

dW;
]H

]l
dl. s15d

By invoking Jensen’s inequalitykexlùekxl f18g, the above
result can also be recast in a form that resembles the second
law of thermodynamics for isoenergetic processessi.e., the
Clausius inequality withdQ=−dWd, namely,

DSsEd ù −KE
A

B dW

T L slarge systemsd, s16d

where, as in the case of the JE, the angular brackets can
presumably be dropped in the thermodynamic limit.4 It is not
difficult to verify, however, that in the case ofquasistatic
processes for sufficiently large systems, one obtains from
either Eq.s12d or Eq. s16d the thermodynamic statement

DSsEd = −E
A

B dW

T
slarge systems, quasistaticd,

where 1/T;k1/TlE,l is the inverse equilibrium temperature
of the system, and hence of the reservoir along the isoener-
getic path.

IV. UTILITY AND PRACTICAL ASPECTS

It is natural to inquire about the utility of the above re-
sults, since they were derived after the admittedly artificial

3 The relevant casesad was suggested by Crooksf26g.
4 An additional microscopic connectionsnot investigated hered be-

tweenT and the instantaneous reservoir temperatureT is necessary
before the inequalitys16d reduces to a statement of the second law
of thermodynamics.
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equations of motion described by Eqs.s2d ands3d. Though in
physical experiments it is very unlikely that one will ever
encounter such an isoenergetic setting, this is not the case in
numerical simulationsssee, e.g., f11,12g. These results
should therefore be of greatest interest for the computational
community, but even in this case one might ask why the
computation ofSsEd or VsEd is at all relevant, since quanti-
ties such as free energies at constant temperature or pressure
have a more direct connection with experiments.

Although an immediate answer to the above question can
be found in the context of phase transitions of finite or
“small” systemsf19,20g, I will briefly describe how one can
recover important thermodynamic quantities in the isother-
mal ensemble given the knowledge ofSsEd or VsEd=eSsEd

over a range of energy values. How to efficiently obtain en-
tropy and density of states at more than a single energy value
will be discussed shortly.

First, notice that the canonical ensemble average at tem-
peratureT of any energy-dependent observablefsEd can be
written as

kfsEdlT =

E
0

`

dE8VsE8de−E8/TfsE8d

E
0

`

dE8VsE8de−E8/T

. s17d

Therefore, knowledge of the density of states over the rel-
evant range of energies whereVsE8de−E8/T is concentrated
allows one to calculate observables such as average potential
energy, heat capacities, and free energy differences by simple
quadrature. In fact,VsEd plays a central role in the so-called
flat histogram Monte Carlo methodsf21,22g, and is used
precisely as described above to estimate such observables. It
is worth mentioning that the present nonequilibrium method
shares an additional feature with flat histogram methods,
which have been introduced with the goal of overcoming
energy barriers in finite-temperature simulations. An estimate
based on Eq.s11d also has the potential of sampling the
phase space without becoming trapped in energy basins de-
fined by barriers much greater thanT srecall thatkB=1 in the
present unitsd. This follows from the ability to construct a
switching process that changes the strength of the interaction
among the particles, as described in the next paragraph, so
that during the course of the simulation the dynamics enjoy
much lower energy barriers and hence greater mobility.

The results derived in this work can be made highly effi-
cient by borrowing a scaling idea originally developed for
the adiabatic switching methodf23g. In the present language,
the scaling idea allows one to obtain entropy differences or
ratios of densities of states between the system of interest
and a reference system over a wide range of energies from
the data obtained at asingleenergy valueE. In fact, assum-
ing that the reference system is an ideal gas, i.e., the
parameter-dependent Hamiltonian isHlsx ,pd=p2/2+lUsxd
with l=lstd switching from 0 to 1 int units of time, by
rearranging the expressionVlsEd=edx dp d(E−p2/2
−lUsxd) one can easily derive the following scaling relation:

S1sE/ld − S0sEd = DSlsEd −
Nd− 2

2
ln l. s18d

HereS1sE/ld is the entropy of the system of interest at the
energy valueE/l ,S0sEd is the sknownd ideal gas entropy,
and the differenceDSlsEd;SlsEd−S0sEd is obtained either
directly from Eq. s12d with the upper integration limit re-
placed byl, or by recording the intermediate values of the
average in Eq.s11d at the instantt corresponding to the de-
sired l=lstd. Note finally, that the expressions derived
herein for DSsEd can equally well be used for estimating
ratios of densities of statesVBsEd /VAsEd, without resorting
to the traditional histograms.

It follows from the above scaling identity that, provided
the entropy or density of states of the reference system is
known with great accuracy, the numeric value ofSsEd or
VsEd can be obtained for a wide range of energies from a
single isoenergetic simulation and, in particular, one is able
to use Eq.s17d to estimate various thermodynamic quantities
of interest over a range of temperature values. In practice, of
course, one has to choose the range ofE judiciously so that
the estimates ofVsEd are reasonably accurate in the range
where the integrand of Eq.s17d is greatest.

Several other properties enjoyed by the present results
will now be discussed. In contrast to the adiabatic switching
method for computing entropy differencesf3g, the exact re-
sult in Eq. s11d does not suffer from the systematic errors
associated with a finite switching timef1g. Moreover, since
neither Eq.s11d nor Eq. s12d relies on a single dynamical
trajectory, these equations are trivially parallelizable. Isoen-
ergetic equations of motion similar to those adopted in this
work have been extensively used in the literature as means of
simulating nonequilibrium processesf11,24g, and the general
recipe provided in Eqs.s2d, s3d, ands5d should not pose any
additional technical difficulty. Nonetheless, a considerable
operational simplification is achieved whenX =s0,]H /]pd
=s0,pd, where it is assumed thatHlsx ,pd=p2/2+Ulsxd. In
this case, the thermostating mechanism reduces to a simple

velocity-dependent forceFp=−l̇s]U /]ldp /p2, and Eq.s11d
yields exactly

eDSsEd =KexpS−E
A

B

dW/TDL , s19d

wheredW=dtl̇s]U /]ld is the infinitesimal amount of work
performed on the system, and 1/T=sNd−2d /p2 is the inverse
instantaneous temperature defined in Sec. IIIsd is the num-
ber of spatial dimensions andN is the number of particlesd.
The above equation has the advantage of involving less ab-
stract and more physically sound quantities, while remaining
as rigorous as the more general case of Eq.s11d.

V. CONCLUSIONS

In summary, the present contribution has introduced two
fundamental nonequilibrium and equilibrium equalities for
entropy differencessor ratios of densities of statesd, Eqs.s11d
and s12d, respectivelyfsee also Eq.s19dg. The former is a
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nontrivial extension of the Jarzynski equalityfEq. s1dg to the
microcanonical ensemble, which was made possible through
the construction of a suitable set of non-Hamiltonian equa-
tions of motion. This particular extension circumvents the
mathematical difficulties that one encounters by adapting
straightforward strategies that have been successful in other
ensemblesf9,10g. The latter is the entropic analog of the
well-known thermodynamic integration formula for free en-
ergies.

The utility of these results was discussed in Sec. IV,
where it was remarked that the artificial character of the
isoenergetic equations of motion described by Eqs.s2d and
s3d causes such results to be of greatest interest in numerical
simulations. In this context, the identities derived in this
work allow one to computeSsEd sentropy at a given energyd
or VsEd sdensity of statesd for a wide range of energies from
a single isoenergetic simulation, as discussed in connection
with Eq. s18d. Knowledge of these quantitiesper se is of

great interest in the study of phase transitions of finite or
“small” systemsf19,20g, but can also be used to recover
important observables in other ensemblesse.g., isothermald,
as evidenced by Eq.s17d.

Since Eqs.s11d ands12d share in common an arbitrariness
through the vector fieldX, a question that deserves further
investigation is whether one can find an optimal form forX
that maximizes computational efficiency.
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